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A numerical study of convective heat 
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Two-dimensional (2-D) laminar f low and heat transfer through an array of parallel flat 
plates with finite thickness was studied numerically. A computer program based on the 
bounded skew hybrid differencing (BSHD) scheme was used and validated to determine the 
recirculation length, friction factor, and Nusselt number distribution along the plates. 
Computations were performed for a wide range of Reynolds number (1.00 < Re D < 400), 
Prandtl number (0.7 < Pr < 10.0), and blockage ratios (0.083 < Br < 0.40). Results were 
compared for f low through an array of thin plates. Significant variations in friction factor 
and Nusselt number were noticed when the plate thicknesses were increased. For practical 
engineering applications, two correlations were developed: (1) the first correlation predicts 
the recirculation length in terms of the Reynolds number and blockage ratio; and (2) the 
second correlation determines the maximum Nusselt number close to the reattachment 
point in terms of the Reynolds number, Prandtl number, and blockage ratio. © 1997 by 
Elsevier Science Inc. 
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I n t roduc t ion  

Laminar flow and heat transfer through an array of parallel blunt 
plates are of interest in a variety of applications, including 
surfaces with fins in heat exchangers, fibbed surfaces, and mi- 
crochannels consisting of an interrupted array of stacked fins. As 
the flow moves from left to right (Figure 1), the boundary layer 
at the leading edge separates from the wall, forming a recircula- 
tion bubble, within which there is an adverse pressure gradient. 
Subsequently, the boundary layer reattaches to the wall and 
approaches the developing state. 

Experimental studies of McCormick et al. (1984), revealed 
that, in general, details of heat transfer and pressure variations 
in separated flows depend upon the prior history of the upstream 
boundary layer. In such cases, potential flow influences are much 
more important and boundary-layer effects are typically negligi- 
ble; that is, the separation occurs because of leading-edge blunt- 
ness, rather than because a boundary layer lacking in momentum 
encounters a sufficiently large adverse pressure gradient. The 
mixing in the region between the separation point and the 
reattachment point plays an important role in the heat and mass 
transfer processes and have been used positively in the design of 
heat exchangers. 

For an array of parallel blunt flat plates, the essential param- 
eters influencing the flow separation and reattachment are flow 
Reynolds number ReD, and the blockage ratio Br. Small dimen- 
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sions of these plates and small flow rates at which they operate 
in some cases result in a low-to-moderate Reynolds number 
corresponding to laminar flow. 

An adequate theoretical description of heat and mass transfer 
at solid boundaries in the entrance region of parallel blunt plates 
with flow separation and reattachment is hampered by lack of a 
complete theoretical solution of fluid field and thermal structure. 
Land and Loehrke (1980) experimentally investigated the flow 
over an isolated blunt flat plate at low-Reynolds numbers, aligned 
parallel to the free stream. They visualized the flow streams 
using dye traces and observed a leading-edge separation bubble 
form at a Reynolds number of 80, based on the plate thickness. 
The bubble reached a maximum streamwise steady recirculation 
length of 6.5 times the plate thickness at Re o = 325. At a higher 
Reynolds number, the separation shear layer became unsteady 
and turbulent (Tafti and Vanka 1991). 

Numerical results for laminar flow over an isolated plate with 
a blunt leading edge was first reported by Djilali (1987). A 
finite-volume method was used in conjunction with two dis- 
cretization schemes: the hybrid-upwind differencing (HD), and 
the bounded-skew-hybrid differencing (BSHD). It was observed 
that the reattachment length predicted with the HD scheme was 
up to 35% shorter than that observed experimentally. The BSHD 
predictions, on the other hand, were in excellent agreement with 
the experimental measurements of Land and Liehrke (1980). 
Later Coney et al. (1988a, b) published a series of papers on flow 
separation and reattachment. They reported experimental stud- 
ies into separated flow, measuring the flow pattern and bound- 
ary-layer characteristics of downstream flow reattachment. Also, 
leading-edge separation for laminar incompressible flow is stud- 
ied numerically more recently in terms of vorticity and stream 
function using the finite volume method by Kazeminejad et al. 
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(1996). They developed a linear correlation for reattachment 
length in terms of Reynolds number based on the plate thick- 
ness. Their results for reattachment length agreed well with 
those measured by Land axtd Loehrke. 

For all cases studied, the region of interest has been an 
isolated thick plate, placed in a large duct, while in many applica- 
tions, the surfaces form stacks of plates aligned parallel to the 
free stream. Under this condition, fluid flow and heat transfer 
depend on the flow Reynolds number, plates spacing, and plate 
thickness. For such configu:ration, Djilali (1994) numerically stud- 
ied fluid flow and heat tnmsfer over the plates subjected to a 
constant surface heat flux. The separation bubble length and 
variation of the Nusselt number over the separation region for 
various Reynolds numbers and blockage ratios are presented 
graphically. He also founcI that the convection heat transfer 
increases substantially in the reattachment region, and a local 
maximum Nusselt number occurs slightly downstream of the 
reattachment point. 

As far as the authors are aware, detailed theoretical work on 
flow through an array of parallel blunt flat plates at low- 
Reynolds number seems to be limited, and the enhanced mecha- 
nism attributable to recirculation in the laminar separated flow is 
still not fully formulated for practical applications. In these 
applications, the velocity and thermal boundary layer develop 
simultaneously, and the leading edge in entrance length depends 
on the recirculation length as well as the Graetz number. Fur- 
thermore, there is no direct comparison of the fluid flow and 
heat transfer for blunt plates with those of thin plates. Thin 
parallel plates have been studied extensively in the literature, 
while in most circumstances fluid enters from a reservoir or from 
an ambient through plates with finite thicknesses. A detail survey 
of laminar flow heat transfer in ducts with thin walls is reported 
by Shah and London (1978). 

In this paper, the two-dimensional (2-D), steady, laminar, 
incompressible Navier-Stokes equations as well as energy the 
equation for separated and reattached flow through an array of 
bluff rectangular plates are solved numerically in terms of the 
primary variables using the bounded skew hybrid difference 
scheme (BSHD) (Raithby 1976; Lai and Gosman 1982~. Velocity 
vector fields as well as temperature distributions are obtained for 
a range of low-Reynolds numbers 100 < Re o < 400, and Prandtl 

numbers 070 < Pr < 10.0. The model development, solution tech- 
nique, validation of the solution procedure, and selected results 
are discussed in the following sections. 

Model development 

The geometry and the coordinate system for the flow under 
consideration is illustrated in Figure 1. It is assumed that flow is 
uniform and parallel with the plates. Thermophysical properties 
of the fluid are assumed to remain constant, and the plates are 
relatively thick compared to the channel width. With these 
simplifying assumptions, the computational domain can be iso- 
lated, as shown in Figure 1, and the governing equations in 
dimensionless form for a 2-D steady laminar flow of a Newtonian 
fluid are as follows: 

OU OV 
~-~ + - f f  = o (1) 

0 .  0 .  0p 1 i 0 2 .  
U - ~  + V - ~  = - - -  + (2) 

0v  0v  0p 1 
(3) 

00 O0 1 ( 020 020 

U-~---~ + V - ~  Reo 'Pr  k 0X2 + ~ - ~ )  (4) 

Solution of the above nondimensional, elliptic equations requires 
that the conditions be specified along the boundaries that en- 
close the entire flow field. The boundary conditions for the 
region ABCDEF shown in Figure 1 are as follows. 

For section BC, at the inlet, a uniform velocity u = u®, v = 0 
and a uniform temperature are assumed. No-slip boundary con- 
ditions are imposed on sections AF and FE. Across the outlet, 
section ED, zero gradients of all variables in the streamwise 
direction are imposed. Although this boundary condition is strictly 
valid only when the flow is fully developed, its use in other flow 

Notation 

Br 
ci 
d 
D 
Gz 
hmax 
H 
k 
Nu 

Nu D 

NUDmax 

P 
Pr 
q" 

Re 

Re D 
T~ 

blockage ratio, D / d  T w 
friction coefficient u 
plate spacing U 
plate thickness u= 
Graetz number, ( D / x  )Re n Pr v 
maximum heat transfer convection coefficient V 
plate centerline spacing x, y 
fluid thermal conductivity X 
Nusselt number based on hydraulic diameter, x r 
2q" H / ( T  w -- T~)k Y 
Nusselt number based on plate thickness, q" D / ( T  w 

- T=)k 
Nusselt number based on maximum convection Greek 
coefficient Gver the plate, hmaxD/k 
dimensionless pressure, p/ (pu2 /2 )  
Prandfl number, v/ot a 
wall heat fltt~ v 
Reynolds number bases on hydraulic diameter of 0 
parallel thin plates, 2u®H/v 

Reynolds number based on plate thickness, u~D/v  
mean bulk temperature 
wall temperature 
velocity component in x-direction 
dimensionless velocity in x-direction, u/u= 
free-stream velocity 
velocity component in y-direction 
dimensionless velocity in y-direction, v/u= 
streamwise and transverse coordinates 
dimensionless streamwise coordinate, x / D  
reattachment length 
dimensionless transverse coordinate, y / D  

thermal diffusivity 
kinematic viscosity 
dimensionless temperature, ( T - T=) / (  q" D / k  ) 
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Figure I Schematic of the stacks 
of blunt parallel plates and flow 
configuration 
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conditions is also permissible for computational convenience, 
provided that the outlet boundary is located: (1) in a region 
where the flow is in the downstream direction; and (2) suffi- 
ciently far downstream from the region of interest. Along the 
centerline CD, v = 0.0, Ou/Oy  = 0.0, O p / O y - 0 . 0 ,  and O0/Oy = 
0.0. On the surface of the plate, a constant and uniform heat flux 
is imposed. 

Solution procedure 

The governing Equations 1-4 are discretized using a finite, 
control-volume procedure. The BSHD is employed for discretiz- 
ing the convective terms in the momentum and energy equations 
(Benodaker et al. 1985). By considering the local direction of the 
flow, the BSHD scheme greatly reduces false numerical diffusion 
that results from nonalignment of the coordinate grid with the 
flow direction (Raithby 1976; Lai and Gosman 1982). A stag- 
gered nonuniform grid is used for the present computations, as 
illustrated in Figure 2. Solution is obtained by an iterative 
method together with the pressure correction algorithm PISO 
(pressure implicit split operation) of Issa (1982). The main advan- 
tage of this technique is the high rate of convergence of the 
numerical calculations for continuity and momentum equations. 
A modified computational TEACH-II code (Benodaker et al. 
1983), which incorporates the BSHD/PISO, is used in the pre- 
sent calculations. In this study, the set of difference equations 
are solved iteratively line-by-line in conjunction with the Thomas 
algorithm. Computation was started by first solving the continuity 
and momentum Equations 1-3 to determine the flow field and 
then the energy equation to find the thermal field in the region 
of interest. 

The computational region extends 5D upstream and 12D 
downstream from the leading edge in the x-direction and half 
the plate spacing in the transverse direction. Expanding the 
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Figure 2 Typical grid configuration of the computational 
domain 

computational domain revealed no significant changes in the 
flow and thermal field results. The number of grid points in 
the x- and y-directions were 80 and 40, respectively. Fine and 
uniform grid spacing are used in the recirculating region and 
variable grid size on the rest of the domain. Variable grid spacing 
is used to resolve steep gradients of velocity and temperature 
near the wall in the y-direction. The configuration of nonuni- 
form grid arrangement is determined from the result of the 
preliminary studies of laminar flow inside a duct and compared 
with those obtained by Djalili (1994). It was found that the flow 
field is almost grid independent when fine grid is used for 
determining the reattachment length. This is mainly because of 
the advantages of the BSHD discretization scheme. However, 
calculations of heat transfer coefficient close to the leading edge 
are very sensitive to the grid expansion ratio, especially for fluids 
with high Prandtl numbers. This is mainly because of the thin- 
ness of the thermal boundary layer and singularity of convection 
heat transfer coefficient at the leading edge. By moving away 
from the leading edge, the convection heat transfer coefficient 
varies smoothly, and the value of maximum Nusselt number 
becomes almost independent with small variation of grid spacing. 
In the present simulation, it was found that the solution is 
reasonable by taking the grid expansion ratio greater than 0.9 
and less than 1.1 in the region of steep gradients. In this study, 
the range of Reynolds number, Prandtl number, and blockage 
ratio studied are as follows: 

100 < Re o < 400, 0.7 < Pr < 10 and 0.083 < Br < 0.40 

The numerical scheme started with an initial condition of 
uniform velocity and temperature for all grid points in the 
domain. For some cases, an attempt is made to accelerate the 
convergence by applying different initial conditions. For example, 
at higher-Reynolds number, the solution obtained from a lower- 
Reynolds number was used as an initial condition. Convergence 
criteria were satisfied when the maximum value of residuals for 
mass, momentum, and energy were less than 2 × 10 -3. 

For validation purposes, present results were compared with 
the solution of air flow with Pr = 0.7 in the entrance section of a 
two-dimensional channel. Figure 3a compares the predicted ve- 
locity profile and the results obtained by Shah and Bhatti (1987) 
at several locations along the channel. Predicted Nusselt number 
in the entrance region of a straight duet is also compared with 
the solution of Shah and Bhatti in Figure 3b. It is evident from 
these figures that the numerical prediction for velocity profile 
and Nusselt number in the entrance region of the 2-D flow 
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Comparison of (a) velocity profile and (b) Nusselt number, in the entrance region of parallel thin plates 

through thin plates are in excellent agreement with the available 
results in the literature. This comparison reveals that the numer- 
ical model can accurately simulate the velocity and temperature 
distribution in the entrance region of parallel plates. 

R e s u l t s  a n d  d i s c u s s i o n  

Flow pat terns 

The flow field for the present problem in Figure 1 can be divided 
into three regions; first the upstream section where the flow 
approaches uniformly the leading edge of the plates. In this zone, 
the flow splits into two parts as it approaches the plates, with 
stagnation point at the forward face of the plate. The second 
region is the distance between the recirculation and reattach- 
ment point of the flow, anti the third region is the flow redevel- 
opment after the reattachment point. In the latter region, the 
boundary layer grows freely along the plate until it is fully 

developed at about one-half of the plate spacing. There is a slight 
pressure reduction at the leading edge caused by flow accelera- 
tion and adverse pressure gradients in the recirculating zone. 
Pressure reduction continues as the fluid flows through the 
plates. The reattachment point is determined by linear interpola- 
tion of the computed wall shear stress distribution along the 
plates. Typical velocity vector field in the entrance region of the 
plates for blockage ratios of 0.10, 0.20, and 0.30 and Re o = 200 
are illustrated in Figure 4. The corresponding Reynolds numbers 
Re are 4000, 2000, and 1666. In this figure, the plate thickness is 
assumed constant, while the plate spacing is decreased. The flow 
reversal in the recirculation region as well as boundary-layer 
development is clearly visible over each plate. Figure 4, also 
shows that fluid acceleration caused by blockage is higher near 
the leading edge, and streamlines move to the center as flow 
moves farther along the plates. The length of the bubble de- 
creases by increasing the blockage ratio or decreasing the plate 
spacing. The reattachment length x r is a function of both the 

Figure 4 

• 
l J • i 

0 
4 5 6 7 8 9 I0 1 

= 2 0 0 ,  B E = 0 . 2 0  , P~C = 2 0 0 0  4 

2 

0 
4 5 6 7 8 9 10 f t  4 5 6 7 8 9 I0 

Re = 2 0 0  , B r = 0 . 1 0  , R e = 4 0 0 0  R e  = 2 0 0  , B r = 0 . 3 0  , Rc=1666 
D D 

Velocity vectors field and streamlines in the entrance region of blunt plates for different blockage ratios 
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Reynolds number and blockage ratio. For Br = 0.10 and Re o = 
200, the value of xJD is about 2.88. This statement agrees well 
with those obtained by Djilali (1994). In Figure 5, numerical 
results as well as the experimental results of Lane the Loehrke 
(1980) and numerical predictions of Djilali are presented. 

Based on the results above, the following correlation is devel- 
oped for the ratio of recirculation length and its variation with 
the blockage ratio. 

x~ Re n - 80.0 
- -  = 0.0024 for 0.083 < Br < 0.40 (5) 
D Br 

This correlation is also illustrated in Figure 5. The linear varia- 
tion of recirculation length with Reynolds number and its inverse 
proportionality with Br are presented in Equation (5). It can be 
seen that Equation 5 can accurately predict the recirculation 
length for all practical applications. 

Friction 

The var iat ion of  C f =  (tLOu/Oy)y=o/(pu~/2) in the entrance 
region of  the plates for Re = 2000 and di f ferent values of  Br  are 
shown in Figure 6. In this graph, each blockage rat io belongs to a 
certain Re n. Note that Re = 2 Re o (1 + 1/Br).  It can be seen 
that the blockage ratio has a strong effect on the value of Cf. 
Friction coefficient has a negative value at the beginning because 
of the reverse flow close to the wall and zero value at the 
reattachment point. After the reattachment, Cf increases to a 
high value. The higher the blockage ratio, the larger the friction 
coefficient after the reattachment point. This effect is at- 
tributable to the reduction of the separation bubble length and 
the short distance the flow has to develop after the bubble. 
However, the value of Cf decreases as the flow moves toward the 
fully developed condition for all blockage ratios. Reducing the 
blockage ratio, the value of Cf approaches that of thin plates. 

Heat transfer 

For flow through parallel plates with finite thickness D, the fluid 
flow and heat transfer depend on Reynolds number Re, Prandtl 
number Pr, and blockage ratio, Br = Did. For a combined entry 
length problem, it is common to plot the results against the 
inverse of the Graetz number Gz, which is a dimensionless 
number defined by 1 / [ D / x X R e  Pr)]. It should be noted that for 
flow between thick plates, Nu = 2 Nu n (1 + 1/Br).  With this 
expression, we may easily convert the Nusselt number based on 
the plate thickness to the Nusselt number of parallel duct. 
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Figure 6 Var ia t ion  of f r ic t ion coef f ic ient  in the en t rance  
region with blockage ratio compared with thin plates 

The value of T W in the Nusselt number is determined by a 
third-order extrapolation of temperature at three grid points 
above the plate. Figure 7 shows the variation of Nu n for Re = 
2000 and different blockage ratios. In this graph, for comparison 
the Nusselt number for thin plates is also plotted. This graph 
indicates that as the plate thickness is increased, the correspond- 
ing Nusselt number is decreased. However, for all cases, the 
limiting values of the Nusselt number is the same that should 
attain a constant value for a fully developed condition. 

Figure 8, presents the local Nusselt number variation with 
respect to Gz-1 for a combined entry length problem for flow 
between plates with a blunt leading edge and for different ReD, 
Pr, and Br = 0.20. In all cases, the Nusselt number is high at the 
leading edge and then decreases for a short distance along the 
wall, similar to the flow through thin plates, but in these cases, 
the Nusselt number starts to increase after a short distance and 
reaches a maximum value at a location close to the reattachment 
point. After the reattachment, the Nusselt number variation is 
similar to the entrance region of thin plates. In the bubble, the 
fluid with the smaller Prandtl number shows a higher heat 
transfer than those of larger Prandtl numbers (recirculation 
effects are more significant for small Pr then large Pr). For small 
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Re D, the variation of Nu D, where the Prandtl number is small, 
approaches the fully developed state at a shorter length. For 
higher ReD, the difference in heat transfer coefficient increases. 
The value of Nusselt number and bubble thermal fluctuation is 
considerable, especially tor high values of Prandtl numbers. 
These graphs also illustrate that heat transfer is very sensitive to 
the Pr, because thermal boundary layers are strongly related to 
the Prandtl number. For all cases, after the reattachment, Nuo 
decreases asymptotically for all values of the Prandtl numbers 
and Reynolds numbers, q~is value corresponds to the Nusselt 
number for fully developed laminar flow between parallel plates 
or ducts with high aspect ratios. This means that for the limiting 
values, the temperature profile will be fully developed, and the 
entry length for the thermal field is smaller for fluids, with 
smaller Prandtl numbers and also higher blockage ratios. 

The value of a maximum Nusselt number at the reattachment 
point is important when we deal with cooling of the plates. For 
all runs presented, a correlation was developed to determine 
Nuom ~ ,  in terms of Re o, Pr, and blockage ratio. Figure 9 
indicates that there is a linear relation between the ratio of 

Nuomax/(Prl/3Re~216), and blockage ratio and the results can 
be correlated as follows: 

NUDrna x = prl/3Re°'216(0.41 + 3.0Br) (7) 

C o n c l u s i o n s  

For a numerical study of 2-D flow through an array of thick 
plates the main conclusions are as follows. 
(1) The flow field is strongly related to the Reynolds number 

Re o and blockage ratio Br. The ratio of x,/D can be found 
from 

x r Re o - 80 
- -  = 0.0024 - -  for 0.083 < Br < 0.40 (5) 
D Br 

(2) The friction coefficient Cf along the plates is different from 
those of thin plates. The higher the blockage ratios, the 
larger the value of Cf in the entrance zone after about one 
plate thickness. However, for all cases, as the flow develops, 
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Figure 9 Correlat ion of max imum Nusselt 
number in the entrance region of blunt plates 
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Cf approaches that of the fully developed condition. For high 
values of x / D ,  Cf  approaches a constant value, which resem- 
bles the fully developed flow condition in the duct. 

(3) For plates with a uniform and constant heat flux, convection 
heat transfer along the entrance zone varies with Reo,  Br, 
and Pr. The Nusselt number approaches a maximum value 
close to the reattachment point, and it decreases to the value 
for fully developed thermal and hydrodynamic condition af- 
ter the reattachment. 

A new correlation of the maximum Nusselt number NuDmax 
in the reattachment region is developed based on present data as 
follows: 

NUDmax = prl/3Re/~216(0.41 + 3.0 Br) (7) 

A c k n o w l e d g m e n t  

This work is supported by Shiraz 
884-514. 

University, Grant 74-EN- 

R e f e r e n c e s  

Benodekar, R. W., Gosman, A. D. and Issa, R. I. 1983. The TEACH-II 
code for the detailed analysis of two-dimensional turbulent recir- 
culating flow. Department of Mechanical Engineering Imperial 
College, London, UK, Rept. FS/83/3  

Benodekar, R. W., Goddard, A. J. H., Gosman, A. D. and Issa, R. I. 
1985. Numerical prediction of turbulent flow over surface- 
mounted ribs. AIAA J. 23, 359-366 

Coney, J. E. R., Kazeminejad, H. and Sheppard, C. G. W. 1988a. 
Experimental study of separated flow over a thick plate. Proc. 2nd 

National Conf. on Heat Transfer, (Glasgow, Scotland), Vol. 1, 
761-772 

Coney, J. E. R., Kazeminejad, H. and Sheppard, C. G. W. 1988b. 
Experimental study of forced convection heat transfer in sepa- 
rated flow. Proc. 2nd National Conf. on Heat Transfer, (Glasgow, 
Scotland), Vol. 1, 701-716 

Djilai, N. 1994. Forced laminar convection in an array of stacked 
plates. Numer. Heat Transfer A, 25, 393-408 

Djilali, N. 1987. An investigation of two-dimensional flow separation 
with reattachment. Ph.D. thesis, University of British Columbia, 
Vancouver, BC, Canada 

Issa, R. I. 1982. Solution of implicitly discretized fluid flow equations 
by operator-splitting. Internal Rep., Imperial College, London, 
UK 

Kazeminejad, H., Ghamari, M. and Yaghoubi, M. A. 1996. A numeri- 
cal study of convective heat transfer from a blunt plate at low 
Reynolds number. Int. J. Heat Mass Transfer 39, 125-133 

Lai, K. Y. M. and Gosman, A. D. 1982. Finite difference and other 
approximate for the transport and Navier-Stokes solutions, De- 
partment of Mechanical Engineering, Imperial College, London, 
UK, Rep. FS/82/16 

Lane, J. C. and Loehrke, R. I. 1980. Leading-edge separation from 
blunt plate at low Reynolds number. J. Fluid Eng. 102, 494-496 

McCormick, D. C., Lessmann, R. C., and Test, F. L. 1984. Heat 
transfer to separated region from a rectangular prism in a cross 
stream. Heat Transfer, 106, 276-283 

Raithby, G. D. 1976. Skew upstream differencing for problems involv- 
ing fluid flow. Comp. Meth. Appl. Mech. Eng., 19, 153-164 

Shah, R. K., and London, A. L. 1978. Laminar flow and forced 
convection in ducts. In Advances in Heat Transfer, Suppl. 1, T. F. 
Irvine and J. P. Harnett (eds.), Academic Press, New York, 87-93 

Shah, R. K. and Bhatti, M. S. 1987. Laminar convection heat transfer 
in ducts. In Handbook of Single-Phase Convection Heat Transfer, 
R. K. Shah, S. Kakac and N. A. Aung (eds.), Wiley, New York 

Tafti, D. K. and Vanka, S. P. 1991. A numerical study of flow 
separation and reattachmcnt on a blunt plate. Phys. Fluids, 3, 
1749-1759 

436 Int. J. Heat and Fluid Flow, Vol. 18, No. 4, August 1997 


